I want to count only the numbers between 500 and 550 in the csv file, how do I enter them? I used a Pandas module, and I want to get the result of a strong number (count) x 25 at the end, how should I input it?
*Python 3.8.5 Anaconda
def surface_area_of_cotter(data_set,x_coordinate,y_coordinate):
dictio = {}
count = 0
s = pd.Series(range(500,550))
data_set = pd.read_csv("elevation_data_dam.csv", header=None)
for s in data_set:
count += 1
if s in dictio:
dictio[int(s)] += 1
else:
dictio[int(s)] = 0
if count ==0.0:
return 0
else:
return (count*25)
I can't upload the csv file, so I'll upload a screenshot.
It looks like this, and it's about 883 rows x 1189 columns
python coding csv count
Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:57:54) [MSC v.1924 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> import pandas as pd
>>> pd.util.testing.makeDataFrame()
Warning (from warnings module):
File "C:\PROGRAMS\Python3864\lib\site-packages\pandas\util\__init__.py", line 12
import pandas.util.testing
FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
A B C D
xJkgimXOO1 -2.068095 -0.862084 1.174664 0.605598
VMJRWwfx2I -0.426533 1.538165 -0.266820 0.865586
B5TJ7K49xv -0.711415 -0.764578 -0.152343 -0.846417
bjvOIK3VqT -0.138098 -0.429742 -1.407439 -0.517214
FBS3NstvO6 2.199321 -0.297894 -0.272281 0.904358
9bQerRF8Cf 0.155426 0.938006 1.445933 0.708087
UmpISw6iWn -0.194906 -0.991698 0.994875 0.558863
79VZoNtvyP -0.250903 -0.064654 0.101859 -0.164328
EbAXsNp8WA 0.585207 1.158592 2.258985 -0.117060
WTSoY8Nfux 0.525517 0.382023 -0.768719 -1.195720
rXIRbiOIPS 1.310514 0.485413 0.516931 0.681023
Lq5Vv3xH5l 0.290427 0.764235 0.260702 1.394933
8NEbjkhdNM -0.664036 1.566563 -0.769363 -1.659315
Q8oYllUF2d 0.407795 -1.518604 -1.113792 0.524132
mGbdXdaBrF -1.032162 -0.689032 -1.184794 1.680902
egws9vRTaw -0.876018 0.879759 -0.159719 -0.359441
dHGXXuP1oT -0.561575 0.447506 0.998484 -0.179926
9jCr4T1ABM 0.660226 0.227815 0.595446 -0.862358
nzC0wNkANA 1.327197 -2.228301 0.209119 0.321083
f1gbUQ2FR7 -1.150391 -0.190378 -2.058716 -0.449486
WbcpUcDZMj 0.561320 0.945240 0.902691 -0.389810
r2qfmlr3iF 1.093691 -0.467255 -0.032177 -0.248554
QrYstxgunK -1.268535 -0.905966 -1.452583 0.878582
r3zi3RY5us 0.704596 -1.270919 0.345733 1.423350
hnhvkmueIM 0.646636 0.496981 1.015088 1.113452
eKuxSLxIGa -1.702409 1.232963 0.089731 -0.480037
VWD7AF5T9j 0.281270 -0.246131 1.226429 2.118941
22zkhvcLZd -1.977567 -0.922947 0.886425 0.328335
hPYZF9y3IB -1.137796 -1.129235 -1.516711 -0.465867
XuxHS1HzZ3 -0.574693 0.826713 -0.487397 0.303155
>>> a = pd.util.testing.makeDataFrame()
>>> a > .5
A B C D
dXkJTlAkc9 True False False False
Ln09Q1q7g9 False False False True
dIQgDaq9b2 False False False False
xWFDToUkr7 True False False False
xH5mELuojY True True False False
CjpqxkePjD True False False True
xY9RGCqhAO False True False False
EKnui571zS True False False False
ghJrNKJuY8 True False True False
H8w4cuIphV True False True False
ALxoOl1jJb False True False True
XJ4nlr8XK0 False False True True
ddgrXORpkh False False True True
oOsZDhi00d False False True True
Ycer5SJX9T False False False True
O3WO2G2eOv False True True True
qLhZJtZuR3 False True True True
eiBuxfXWyM False False False False
VdxcO7Gztz False False False False
xoRXaQcMY8 False True True False
jsc3WBYqfO True True False True
D3XaUA5wxS False False False False
z8EBZ1aWAz True False False True
BjHgTXcpy0 False False True True
rOj7BN4mbq False True False True
ULyw3Hm61E True False False True
nlTLSnkn9g False False False True
TVqJwv23fl False False False False
4IrjoN45oG False False False False
6Q5YuWOFxa False False False False
>>> mask = (a > .5) & (a < .7)
>>> mask.sum()
A 2
B 0
C 4
D 2
dtype: int64
>>> mask.sum().sum()
8
>>> a[mask]
A B C D
dXkJTlAkc9 0.514351 NaN NaN NaN
Ln09Q1q7g9 NaN NaN NaN NaN
dIQgDaq9b2 NaN NaN NaN NaN
xWFDToUkr7 NaN NaN NaN NaN
xH5mELuojY NaN NaN NaN NaN
CjpqxkePjD NaN NaN NaN NaN
xY9RGCqhAO NaN NaN NaN NaN
EKnui571zS NaN NaN NaN NaN
ghJrNKJuY8 NaN NaN 0.564886 NaN
H8w4cuIphV NaN NaN 0.640341 NaN
ALxoOl1jJb NaN NaN NaN 0.523452
XJ4nlr8XK0 NaN NaN 0.685678 NaN
ddgrXORpkh NaN NaN 0.611645 NaN
oOsZDhi00d NaN NaN NaN 0.679720
Ycer5SJX9T NaN NaN NaN NaN
O3WO2G2eOv NaN NaN NaN NaN
qLhZJtZuR3 NaN NaN NaN NaN
eiBuxfXWyM NaN NaN NaN NaN
VdxcO7Gztz NaN NaN NaN NaN
xoRXaQcMY8 NaN NaN NaN NaN
jsc3WBYqfO NaN NaN NaN NaN
D3XaUA5wxS NaN NaN NaN NaN
z8EBZ1aWAz NaN NaN NaN NaN
BjHgTXcpy0 NaN NaN NaN NaN
rOj7BN4mbq NaN NaN NaN NaN
ULyw3Hm61E 0.591463 NaN NaN NaN
nlTLSnkn9g NaN NaN NaN NaN
TVqJwv23fl NaN NaN NaN NaN
4IrjoN45oG NaN NaN NaN NaN
6Q5YuWOFxa NaN NaN NaN NaN
>>>
© 2024 OneMinuteCode. All rights reserved.