Why does 0.1f become 10 times slower if you change it to zero

Asked 1 years ago, Updated 1 years ago, 152 views

When I ran it on Visual Studio 2010 SP1, Source Code 1 operates about 10 times faster than Source Code 2.

There are only two lines that change. I don't think there's much difference Why is the performance so different?

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0.1f; // <--
        y[i] = y[i] - 0.1f; // <--
    }
}
const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0; // <--
        y[i] = y[i] - 0; // <--
    }
}

performance c++ visual-studio-2010 compilation floating-point

2022-09-22 22:33

1 Answers

This is a problem related to denormalized floating-point.

alt text

In the figure, the red color is normalized number and the blue color is denormalized number. denormalized number fills the gap between 0 and floating-point. In other words, a whole number smaller than the smallest normalized number but not zero is called denormalized/subnormal number.

Calculating denormalized floating-point may be several hundred times slower than calculating normalized floating-point. Most processors cannot process denormalized fp directly This is because a trap occurs and microcode is used to resolve it in hardware.

If you run the following code in an x64 environment

int main() {

    double start = omp_get_wtime();

    const float x[16]={1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6};
    const float z[16]={1.123,1.234,1.345,156.467,1.578,1.689,1.790,1.812,1.923,2.034,2.145,2.256,2.367,2.478,2.589,2.690};
    float y[16];
    for(int i=0;i<16;i++)
    {
        y[i]=x[i];
    }
    for(int j=0;j<9000000;j++)
    {
        for(int i=0;i<16;i++)
        {
            y[i]*=x[i];
            y[i]/=z[i];
#ifdef FLOATING
            y[i]=y[i]+0.1f;
            y[i]=y[i]-0.1f;
#else
            y[i]=y[i]+0;
            y[i]=y[i]-0;
#endif

            if (j > 10000)
                cout << y[i] << "  ";
        }
        if (j > 10000)
            cout << endl;
    }

    double end = omp_get_wtime();
    cout << end - start << endl;

    system("pause");
    return 0;
}

Result:

#define FLOATING
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007

//#define FLOATING
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.46842e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.45208e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044

In the second run, you can see that the numbers are very close to zero. Denormalized number is so small that this difference occurs because most processors cannot handle it efficiently.

Add the following code to make denormalized number handle 0 Then the code will no longer be 10 times slower.

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); *However, you must compile with SSE enabled

Experiment at Core i7 920 @ 3.5 GHz:

// If 'denormal' is not treated as zero
0.1f: 0.564067
0   : 26.7669

//  If treated as zero
0.1f: 0.587117
0   : 0.341406


2022-09-22 22:33

If you have any answers or tips


© 2024 OneMinuteCode. All rights reserved.