s3 = Series ('Seoul', '', 'Daejeon', 'Daegu', '!', 'Busan')
s3.place('Seoul', 'Daejeon', 'Daegu', 'Busan', np.nan)
I know how to change Seoul, Daejeon, Daegu, and Busan to Nan I don't know how to change everything to nan values except Seoul, Daejeon, Daegu, and Busan.
python
>>> import pandas as pd
>>> s = pd.Series ("Seoul Daejeon Daegu! Busan".split())
>>> s
0 Seoul
the first battle
2 Daegu
3 !
4 Busan
dtype: object
>>> s[s.isin ("Seoul, Daejeon, Daegu, Busan").split())]
0 Seoul
the first battle
2 Daegu
4 Busan
dtype: object
>>> s[!s.isin ("Seoul, Daejeon, Daegu, Busan").split())]
SyntaxError: invalid syntax
>>> s[nots.isin] ("Seoul, Daejeon, Daegu, Busan").split())]
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
s[nots.isin ("Seoul, Daejeon, Daegu, Busan").split())]
File "C:\PROGRAMS\Python3864\lib\site-packages\pandas\core\generic.py", line 1537, in __nonzero__
raise ValueError(
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
>>> s[~s.isin ("Seoul, Daejeon, Daegu, Busan").split())]
3 !
dtype: object
>>> import numpy as np
>>> s[~s.isin ("Seoul, Daejeon, Daegu, Busan").split())] = np.nan
>>> s
0 Seoul
the first battle
2 Daegu
3 NaN
4 Busan
dtype: object
>>>
© 2024 OneMinuteCode. All rights reserved.