Python for statement Creating recurring data frames by year

Asked 2 years ago, Updated 2 years ago, 69 views

I want to receive a value as input and store the value of the for statement by year in the data frame.

Trying to repeat for 10 years from 2019

Middle-aged housing amount in 2019 --> 2013 average / young housing value in 2009 --> 2019 average / middle-aged housing value in 2014 --> divided by two values

In 2018, the 2008-2012 average / 2013-2018 average / divided by two values

I'd like to calculate the reduced value of the year in this way.

path = r'C:\Users\admin\Desktop\Python\Legal East Code_Full Material.xlsx'
code_df=pd.read_excel(path)

x=input ('Enter the address you want to find:') #Enter it in Korean to find the code to substitute it

code_select_df = code_df[code_df['waste' == 'exist']

code_sample_df = code_select_df[code_select_df['legal name'] == x]

code_sample_df["Court Code"]

code = code_sample_df["Court Code"]

x=str(cod.iloc[0])

x=x[0:5] #Only 5 digits out of the long legal code are required

y=int(input('Enter base year:'))) 


df_base=pd.DataFrame (columns=[year], 'middle-aged housing value', 'young housing price', 'middle-aged housing price'])

for j in range(0,10):

    k=y-j


    price_df=get_year_realprice('x','str(k)')
    #Enter middle-aged housing value calculation year


    temp=price_df["dedicated area"]
    price_df['exclusive area']=pd.to_numerical(temp)

    temp = price_df ['transaction amount'].apply(lambda x: x.replace(',', '') )
    price_df['transaction amount'] = pd.to_numerical(temp)

    price_df['fair unit price'] = price_df['transaction amount'] / price_df['exclusive area'] / 3.3

    temp=price_df['architectural year']
    price_df['construction year']=pd.to_numerical(temp)


    price_new_df = price_df[price_df['building year'] >=int(k)-4]
    #Based on young housing = within 5 years of completion 

    price_select_df = price_df[price_df['architectural year'] >= int(k)-9]
    price_old_df = price_select_df[price_select_df['building year']<= int(k)-5]
    #Based on middle-aged housing = within 6-10 years of completion

    old_price = np.mean (price_old_df['per-price'])
    new_price = np.mean (price_new_df['per-price'])
    mah_value=(old_price/new_price)

    df_base=df_base.append(pd.DataFrame([str(k), mah_value, new_price, old_price]), columns=['year', 'middle-aged housing value', 'young housing price', 'middle-aged housing price'], and ignore_index=true)
df_base

Get_year_realprice is defined above and appears to be working well. (It's a code that already exists, so I wrote it right away)

def get_realprice(code, date):

    url = 'http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade'
    key = 'NfQ7K6WgSudMMtb8YT5AC3%2FrDhHvg%2BZupj%2Fy4fze4XxJ61XctYdvZEc5wNFrqargp5yLGQwRw7RY16eCAebIbg%3D%3D'

    real_url = url +'?'+ 'LAWD_CD={}&DEAL_YMD={}&serviceKey={}'.format(code, date, key)


    data = requests.get(real_url)
    data_bs = bs4.BeautifulSoup(data.text, 'lxml-xml')
    item_list = data_bs.find_all('item')

    Transaction amount list = []
    Year of Architecture List = []
    Year List = []
    Wallist = []
    Ilist = []
    List of legal dongs = []
    Apartment List = []
    Dedicated Area List = []
    Layer List = []
    Landlord list = []
    Regional Code List = []

    for item in item_list:
        Transaction amount list.append(item.find('transaction amount')).text)
        A list of architectural years.text)
        Year list.append(item.find('year')).text)
        Wallist.append(item.find('month').text)
        Illist.append(item.find('work')).text)
        The list of legal dongs.append(item.find('legal dong')).text)
        The apartment list.append.text)
        Dedicated area list.append(item.find('dedicated area')).text)
        a floor listappend(item.find('layer')).text)
        a lot number listappend(item.find('lot number').text)
        Regional code list.append(item.find('regional code').text)

    result_df = pd.DataFrame({'transaction amount'):transaction amount list,
                 'Architectural Year': Architectural Year List 'Year': Year List, Month': Wallist, Day': Ilist,
                 Beopjeong-dong': Beopjeong-dong list, 'apartment': apartment list, 'exclusive area': exclusive area list,
                 'Layer':Layer list, 'Location number':Location list, 'Region code':Region code list})
    return result_df
def get_year_realprice(code, year):

    year_list = []
    for i in range(1, 13):
        if i < 10:
            temp_date = year + '0' + str(i)
        else:
            temp_date = year + str(i)

        year_list.append(get_realprice(code, temp_date))

    year_df = pd.concat(year_list)
    year_df = year_df.reset_index()
    del year_df['index']
    del year_df ["Court Rocks"]
    del year_df ["Apartment"]
    del year_df ["Layer"]
    "Del year_df" ["Zone"Zone"
    del year_df ["work"]
    delyear_df["Region Code"]

    return year_df

I'd really appreciate your help!

python dataframe pandas

2022-09-22 11:39

2 Answers

I think it's going well.

Since k is int, I think we only need to correct the int(k) part, but it is not an error, so there is no problem with execution...But what's the question?

2019

 Yearly middle-aged housing value Young housing price Middle-aged housing price
0   2019    0.518687    413.246439  214.345396
1   2018    0.688188    287.400592  197.785632
2   2017    0.810316    230.767602  186.994569
3   2016    0.922552    182.836190  168.675836
4   2015    1.099251    145.339986  159.765101
5   2014    1.165235    133.570693  155.641223
6   2013    0.856553    158.622049  135.868213
7   2012    1.022391    133.735333  136.729819
8   2011    1.108385    135.849155  150.573229
9   2010    0.990234    150.722783  149.250750

2018

 Yearly middle-aged housing value Young housing price Middle-aged housing price
0   2018    0.688188    287.400592  197.785632
1   2017    0.810316    230.767602  186.994569
2   2016    0.922552    182.836190  168.675836
3   2015    1.099251    145.339986  159.765101
4   2014    1.165235    133.570693  155.641223
5   2013    0.856553    158.622049  135.868213
6   2012    1.022391    133.735333  136.729819
7   2011    1.108385    135.849155  150.573229
8   2010    0.990234    150.722783  149.250750
9   2009    0.999133    147.929649  147.801344


2022-09-22 11:39

If you use pycharm or visual studio code, old_price =...Set the breakpoint on the line, run it in debug mode, and follow one line at a time.


2022-09-22 11:39

If you have any answers or tips


© 2024 OneMinuteCode. All rights reserved.