I want to extract columns of certain conditions from Numpy.

Asked 2 years ago, Updated 2 years ago, 49 views

I want to extract columns of certain conditions from Numpy.

An array of numpy was obtained using Pandas in the dataset.

[[0.2  0.   0.   ... 0.   2.   2.  ]
 [0.2  0.   0.   ... 0.   2.   2.  ]
 [0.55 0.   0.   ... 0.   0.   0.  ]
 [0.43 0.   0.   ... 0.   2.   2.  ]
 [0.21 0.   0.   ... 0.   2.   1.  ]
 [0.37 0.   0.   ... 0.   2.   2.  ]]

I would like to reclassify files using formulas based on the last elements (0,1,2) in each column. How do I do that?

ex)

print(train0) 
 [ [0.55 0.   0.   ... 0.   0.   0.  ]]

print(train1) 
 [ [0.21 0.   0.   ... 0.   2.   1.  ]]

print(train2) 
 [[0.2  0.   0.   ... 0.   2.   2.  ]
 [0.2  0.   0.   ... 0.   2.   2.  ]
 [0.43 0.   0.   ... 0.   2.   2.  ]
 [0.37 0.   0.   ... 0.   2.   2.  ]]

numpy

2022-09-22 10:58

1 Answers

I think it'll be possible if you do it cluelessly.

>>> train = np.random.randint(0, 3, (15, 5))
>>> train
array([[1, 0, 2, 0, 2],
       [0, 1, 0, 1, 2],
       [0, 2, 0, 1, 0],
       [0, 2, 0, 0, 1],
       [2, 0, 0, 1, 0],
       [2, 2, 0, 0, 0],
       [2, 2, 0, 1, 0],
       [1, 2, 1, 0, 0],
       [1, 2, 2, 1, 1],
       [2, 2, 2, 0, 1],
       [0, 2, 0, 0, 2],
       [0, 0, 0, 1, 2],
       [2, 1, 2, 2, 0],
       [0, 1, 1, 2, 1],
       [0, 2, 2, 0, 0]])
>>> t = dict()
>>> for row in train:
    cond = tuple(row[-3:])
    t[cond] = t.get(cond, [])
    t[cond].append(row)


>>> for k, v in t.items():
    t[k] = np.array(t[k])
    print('--', k)
    print(t[k])


-- (2, 0, 2)
[[1 0 2 0 2]]
-- (0, 1, 2)
[[0 1 0 1 2]
 [0 0 0 1 2]]
-- (0, 1, 0)
[[0 2 0 1 0]
 [2 0 0 1 0]
 [2 2 0 1 0]]
-- (0, 0, 1)
[[0 2 0 0 1]]
-- (0, 0, 0)
[[2 2 0 0 0]]
-- (1, 0, 0)
[[1 2 1 0 0]]
-- (2, 1, 1)
[[1 2 2 1 1]]
-- (2, 0, 1)
[[2 2 2 0 1]]
-- (0, 0, 2)
[[0 2 0 0 2]]
-- (2, 2, 0)
[[2 1 2 2 0]]
-- (1, 2, 1)
[[0 1 1 2 1]]
-- (2, 0, 0)
[[0 2 2 0 0]]

If it's in the form of a pandas data frame, I'll make a column that combines the last three, and I'll do groupby with that column.


2022-09-22 10:58

If you have any answers or tips


© 2024 OneMinuteCode. All rights reserved.