I'd like to do a cross-examination. Please tell me how to do it.

Asked 1 years ago, Updated 1 years ago, 420 views

import numpy as np
import pandas aspd
df_maize=pd.read_csv("PSD online data maize.csv", thousands=',')]
df_maize.corr()

I was able to calculate the correlation coefficient, but there was an error in the following test

import pandas as pd
import matplotlib.pyplot asplt
import seaborn as sns
from scipy.stats import spearmanr
bs=df_maize ['Beginning Stocks'].values
es=df_maize ['Ending Stocks'].values
p_value=df_maize.corr[0]
TypeError Traceback (most recent call last)
<ipython-input-11-9b62ddc60036>in<module>
      1bs = df_maize ['Beginning Stocks'].values
      2es=df_maize ['Ending Stocks'].values
---->3p_value=df_maize.corr[0]

TypeError: 'method' object is not subscriptable

python pandas numpy scipy

2023-02-06 21:25

1 Answers

If you want p-value, you should use scipy.stats.pearsonr().

import pandas as pd
from scipy.stats import pearsonr

df = pd.DataFrame({'A':range(5),
                   'B': [x**2 for x in range (5)],
                   'C': [x**3 for x in range (5) ]})

p_value=df.corr(method=lambdax, y:pearsonr(x,y)[1])
print(df)
print(p_value)

dataframe

p-value


2023-02-06 21:59

If you have any answers or tips


© 2024 OneMinuteCode. All rights reserved.