If you mean code that only specifies the bottom half of the image to perform object detection, try running_detector in this notebook as follows:
#https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/object_detection.ipynb
def run_detector_half(detector, path):
img=load_img(path)
cropped_img=img [img.shape[0]//2:img.shape[0]]
converted_img = tf.image.convert_image_dtype(cropped_img, tf.float32) [tf.newaxis,...]
start_time = time.time()
result=detector(converted_img)
end_time = time.time()
result={key:value.numpy()for key, value in result.items()}
print("Found%objects."%len(result["detection_scores"]))
print("Inference time:", end_time-start_time)
image_with_boxes=draw_boxes(
cropped_img.numpy(), result ["detection_boxes",
result ["detection_class_entities", result ["detection_scores"))
img_np=img.numpy()
for i, jin enumerate (range(img.shape[0]//2, img.shape[0])):
img_np[j]=image_with_boxes[i]
display_image(img_np)
© 2024 OneMinuteCode. All rights reserved.