I'd like to supplement the missing DataFrame/Series values with constants. Is there a way to specify the interpolation [limit_area='inside']?
I don't want to make up for the missing values on both ends.
import pandas as pd
series=pd.Series(data=[None, 20, None, 40, None], index=['aa', 'bb', 'cc', 'dd', 'ee', name='value')
print('◇original data')
display(series.to_frame())
# I want to specify the inside option as in series=series.fillna(0,limit_area='inside')#←series.interpolate().
print(' ◇↓ expected defect value interpolation result (I want to insert it internally with a constant).I don't want to extrapolate.)')
series=pd.Series(data=[None, 20, 0, 40, None], index=['aa', 'bb', 'cc', 'dd', 'ee', name='value')
display(series.to_frame())
Thank you for your reply.
The first_valid_index/last_valid_index method was successful.
################################################################################
import pandas as pd
series = pd.Series(
# data=[ None, None, None, None, None, None ],
data=[ None, None, 20, None, 40, None ],
index=[
pd.Timestamp('2022/01/10'),
pd.Timestamp('2022/01/11'),
pd.Timestamp('2022/01/12'),
pd.Timestamp('2022/01/13'),
pd.Timestamp('2022/01/14'),
pd.Timestamp('2022/01/15')
], name='value'
)
pr int (' Enhancing the original data ' )
display(series.to_frame())
index_low = series.first_valid_index()
index_high=series.last_valid_index()
if index_low is not None:
series.loc [index_low:index_high] = series.loc [index_low:index_high].fillna(0)
display(series.to_frame())
Thank you.
What should I do if I don't know how many missing values at both ends will continue?
Sorry for the unclear question.
import pandas as pd
series = pd.Series(
data=[ None, None, 20, None, 40, None ],
index=[
pd.Timestamp('2022/01/10'),
pd.Timestamp('2022/01/11'),
pd.Timestamp('2022/01/12'),
pd.Timestamp('2022/01/13'),
pd.Timestamp('2022/01/14'),
pd.Timestamp('2022/01/15')
], name='value'
)
pr int (' Enhancing the original data ' )
display(series.to_frame())
© 2025 OneMinuteCode. All rights reserved.