I'm a python beginner.When I ran Taehoon Kim's tensorflow (1.13.1) Image auto-generated demo, I got the following error:I would appreciate it if you could let me know.
File "main.py", line 103, in<module>
tf.app.run()
File"/anaconda3/envs/tensorflow/lib/python 3.5/site-packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "main.py", line81, in main
data_dir=FLAGS.data_dir)
File "/Users/ina/model.py", line81, in_init__
raise Exception("[!] No data found in '''+data_path+'''')
Exception: ! No data found in'./data/celebA/*.jpg'
importos
import scipy.misc
import numpy as np
from model import DCGAN
from utils import pp, visualize, to_json, show_all_variables
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_integer("epoch", 25, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_float("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")```
flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped).[108]")
flags.DEFINE_integer("input_width", None, "The size of image to use (will be center closed).If None, same value as input_height [None]")
flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("output_width", None, "The size of the output images to produce.If None, same value as output_height [None]")
flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA,mnist,lsun]")
flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images[*]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("data_dir", "./data", "Root directory of data [data]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]")
flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
flags.DEFINE_integer("generate_test_images", 100, "Number of images to generate during test.[100]")
FLAGS=flags.FLAGS
defmain(_):
pp.pprint (flags.FLAGS.__flags)
if FLAGS.input_width is None:
FLAGS.input_width = FLAGS.input_height
if FLAGS.output_width is None:
FLAGS.output_width = FLAGS.output_height
if notos.path.exists(FLAGS.checkpoint_dir):
os.madeirs (FLAGS.checkpoint_dir)
if notos.path.exists(FLAGS.sample_dir):
os.madeirs (FLAGS.sample_dir)
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth=True
with tf.Session(config=run_config) asess:
if FLAGS.dataset=='mnist':
dcgan = DCGAN (
sess,
input_width = FLAGS.input_width,
input_height = FLAGS.input_height,
output_width = FLAGS.output_width,
output_height = FLAGS.output_height,
batch_size = FLAGS.batch_size,
sample_num = FLAGS.batch_size,
y_dim = 10,
z_dim = FLAGS.generate_test_images,
dataset_name =FLAGS.dataset,
input_fname_pattern = FLAGS.input_fname_pattern,
crop = FLAGS.crop,
checkpoint_dir = FLAGS.checkpoint_dir,
sample_dir = FLAGS.sample_dir,
data_dir=FLAGS.data_dir)
else:
dcgan = DCGAN (
sess,
input_width = FLAGS.input_width,
input_height = FLAGS.input_height,
output_width = FLAGS.output_width,
output_height = FLAGS.output_height,
batch_size = FLAGS.batch_size,
sample_num = FLAGS.batch_size,
z_dim = FLAGS.generate_test_images,
dataset_name =FLAGS.dataset,
input_fname_pattern = FLAGS.input_fname_pattern,
crop = FLAGS.crop,
checkpoint_dir = FLAGS.checkpoint_dir,
sample_dir = FLAGS.sample_dir,
data_dir=FLAGS.data_dir)
show_all_variables()
if FLAGS.train:
dcgan.train (FLAGS)
else:
if not dcgan.load(FLAGS.checkpoint_dir)[0]:
raise Exception("[!] Train a model first, then run test mode")
to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
[dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
[dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
[dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
[dcgan.h4_w, dcgan.h4_b, None])
Below is codes for visualization
OPTION = 1
visualize (sess, dcgan, FLAGS, OPTION)
if__name__=='__main__':
tf.app.run()
First, we moved the corresponding data (celebA) in the image to the data folder and then ran it after Pillow installation.
I still got an error, but once I deleted the code and tried again, it succeeded.
Thank you for your comment.
© 2024 OneMinuteCode. All rights reserved.