Merging two data frames

Asked 2 years ago, Updated 2 years ago, 91 views

rekfs_skd_l[5]
       STD    STA   TYP
FLT                    
171  08:30  11:30  B738
172  12:40  17:40  B738
172  18:20  19:35  B738
211  08:40  10:25  B738
212  11:25  13:20  B738
..     ...    ...   ...
594  17:55  18:45  B738
595  19:20  20:25  B738
761  22:00  17:05  B772
791  04:20  08:20   J7Q
792  12:40  20:10   J7Q
[118 rows x 3 columns]

rost_skd_l[5]
       STD    STA   TYP
FLT                    
171  08:00  11:30  B738
172  12:40  17:40  B738
172  18:20  19:35  B738
211  08:40  10:25  B738
212  11:25  13:20  B738
..     ...    ...   ...
594  17:55  18:45  B738
595  19:20  20:25  B738
761  22:00  17:05  B772
791  04:20  08:20  B772
792  12:40  20:10  B772
[126 rows x 3 columns]

pd.merge(rekfs_skd_l[5], rost_skd_l[5], left_index=True, right_index=True, how='outer')
     STD_x  STA_x TYP_x  STD_y  STA_y TYP_y
FLT                                        
171  08:30  11:30  B738  08:00  11:30  B738
172  12:40  17:40  B738  12:40  17:40  B738
*172  12:40  17:40  B738  18:20  19:35  B738
172  18:20  19:35  B738  *12:40  17:40  B738
*172  18:20  19:35  B738  *18:20  19:35  B738
..     ...    ...   ...    ...    ...   ...
594  17:55  18:45  B738  17:55  18:45  B738
595  19:20  20:25  B738  19:20  20:25  B738
761  22:00  17:05  B772  22:00  17:05  B772
791  04:20  08:20   J7Q  04:20  08:20  B772
792  12:40  20:10   J7Q  12:40  20:10  B772
[128 rows x 6 columns]

I want to compare the differences between the two data frames.(Time, type, FLT with only one of the two data frames, etc.) You want to combine the two data frames to see the difference, but you get duplicate data. How do I do it without duplication?

The overlapping parts are marked with * above.

# Duplicate parts
172  12:40  17:40  B738 
172  18:20  19:35  B738

python pandas dataframe merge

2022-09-20 19:43

1 Answers

In both data frames, the index FLT has a value of 172.

It's based on the index, so when you put index 172, you have to make all the combinations of two, so you get 2x2.

Like this.

If you want to make just 172a+172c, 172b+172d of this, before you put it together, you need to create another index that can tell the row 172 that there are two, and merge it based on that index.


2022-09-20 19:43

If you have any answers or tips


© 2024 OneMinuteCode. All rights reserved.