For example
a b c d e f g
1 2 1 2 1 2 1
2 1 2 1 1 1 1
1 2 2 2 2 1 2
If you have this kind of data, you can use Panda's, Numpi, a b c def g for each attribute Is there a way to summarize the whole data in such a way that a has two 1s, b has two 2s, and 1s? And I want to know if there's a way to diagram the summarized data into a graph or something I'm asking you a question because I searched the Internet hard but it didn't come out well.
pandas python
Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:57:54) [MSC v.1924 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> txt = """a b c d e f g
1 2 1 2 1 2 1
2 1 2 1 1 1 1
1 2 2 2 2 1 2"""
>>> txt = txt.replace(" ", ",")
>>> import pandas as pd
>>> from io import StringIO
>>> df = pd.read_csv(StringIO(txt))
>>> df
a b c d e f g
0 1 2 1 2 1 2 1
1 2 1 2 1 1 1 1
2 1 2 2 2 2 1 2
>>> df.a.value_counts()
1 2
2 1
Name: a, dtype: int64
>>> for col in df.columns:
print("-----")
print(col)
print(df[col].value_counts())
-----
a
1 2
2 1
Name: a, dtype: int64
-----
b
2 2
1 1
Name: b, dtype: int64
-----
c
2 2
1 1
Name: c, dtype: int64
-----
d
2 2
1 1
Name: d, dtype: int64
-----
e
1 2
2 1
Name: e, dtype: int64
-----
f
1 2
2 1
Name: f, dtype: int64
-----
g
1 2
2 1
Name: g, dtype: int64
>>> df_vc = pd.DataFrame({ col:df[col].value_counts() for col in df.columns })
>>> df_vc
a b c d e f g
1 2 1 1 1 2 2 2
2 1 2 2 2 1 1 1
>>> import matplotlib.pyplot as plt
>>> df_vc.T.plot.bar(stacked=True)
<AxesSubplot:>
>>> plt.show()
© 2025 OneMinuteCode. All rights reserved.