Cropped web page: https://finance.yahoo.com/quote/AWR?p=AWR
The tag of other imported parts is span, but only the part of Forward Divide & Yield is td, so I modified this part to write a code to represent all the information...But it doesn't work. I ask for your help me.
<Original Code>
import pandas as pd
import datetime
import requests
import yfinance as yf
import time
from requests.exceptions import ConnectionError
from bs4 import BeautifulSoup
def web_content_div(web_content,class_path):
web_content_div = web_content.find_all('div',{'class': class_path})
try:
spans = web_content_div[0].find_all('span')
texts = [span.get_text() for span in spans]
except IndexError:
texts = []
return texts
def real_time_price(stock_code):
url = 'https://finance.yahoo.com/quote/' + stock_code + '?p=' + stock_code
try :
r = requests.get(url)
web_content = BeautifulSoup(r.text,'lxml')
texts = web_content_div(web_content, 'My(6px) Pos(r) smartphone_Mt(6px)')
if texts != []:
price, change = texts[0],texts[1]
else:
price , change = [] , []
#ForwardDividend & Yield#########################################################################################################################################
texts = web_content_div(web_content,'D(ib) W(1/2) Bxz(bb) Pstart(12px) Va(t) ie-7_D(i) ie-7_Pos(a) smartphone_D(b) smartphone_W(100%) smartphone_Pstart(0px) smartphone_BdB smartphone_Bdc($seperatorColor)')
if texts != []:
for count, forword in enumerate(texts):
if forword == 'Forward Dividend & Yield':
dividend = texts[count + 1]
else:
dividend = []
####################################################################################################################################################
texts = web_content_div(web_content,'D(ib) W(1/2) Bxz(bb) Pstart(12px) Va(t) ie-7_D(i) ie-7_Pos(a) smartphone_D(b) smartphone_W(100%) smartphone_Pstart(0px) smartphone_BdB smartphone_Bdc($seperatorColor)')
if texts != []:
for count, EX in enumerate(texts):
if EX == 'Ex-Dividend Date':
EXdate = texts[count + 1]
else:
EXdate = []
texts = web_content_div(web_content,'D(ib) W(1/2) Bxz(bb) Pend(12px) Va(t) ie-7_D(i) smartphone_D(b) smartphone_W(100%) smartphone_Pend(0px) smartphone_BdY smartphone_Bdc($seperatorColor)')
if texts != []:
for count, vol in enumerate(texts):
if vol == 'Volume':
volume = texts[count + 1]
else:
volume = []
except ConnectionError:
price, change, dividend, EXdate,volume = [],[],[],[],[]
return price, change, dividend, EXdate,volume
stock=['awr']
while(True):
info = []
col = []
time_stamp = datetime.datetime.now() - datetime.timedelta(hours=14)
time_stamp = time_stamp.strftime('%Y-%M-%D %H:%M:%S')
for stock_code in stock:
price, change,dividend, EXdate,volume = real_time_price(stock_code)
info.append(price)
info.extend([change])
info.extend([dividend])
info.extend([EXdate])
info.extend([volume])
time.sleep(1)
col = [time_stamp]
col.extend(info)
print(col)
Results
2021-51-03/16/21 03:51:27', '72.38', '+0.22 (+0.30%)', 'Ex-Dividend Date', 'Feb 12, 2021', '203,953'
Among them, I would like to modify 'Ex-divided date' to be 1.34 (1.86%) corresponding to Forward Divided & Yield.
python
The cord is long. You have created only the necessary parts.
You are using the data provided in HTML as lxml.
I don't know what kind of data we need, but... Extracts can be made using the following formula:
import requests
from bs4 import BeautifulSoup
def real_time_price(stock_code = 'AWR'):
url = 'https://finance.yahoo.com/quote/' + stock_code + '?p=' + stock_code
r = requests.get(url)
soup = BeautifulSoup(r.text, 'html.parser')
price = soup.select_one(r'span.Mb\(-4px\).D\(ib\)').text
rate = soup.select_one(r'span.Fw\(500\).Fz\(24px\)').text
Earnings_Date = soup.select_one(r'div.smartphone_Pstart\(0px\).smartphone_BdB.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-of-type(5) > td.Ta\(end\).Fw\(600\).Lh\(14px\)').text
Yield = soup.select_one(r'#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pstart\(12px\).Va\(t\).ie-7_D\(i\).ie-7_Pos\(a\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pstart\(0px\).smartphone_BdB.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-of-type(6) > td.Ta\(end\).Fw\(600\).Lh\(14px\)').text
Volume = soup.select_one(r'#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pend\(12px\).Va\(t\).ie-7_D\(i\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pend\(0px\).smartphone_BdY.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-of-type(7) > td.Ta\(end\).Fw\(600\).Lh\(14px\) > span').text
Dividend_Date = soup.select_one(r'#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pstart\(12px\).Va\(t\).ie-7_D\(i\).ie-7_Pos\(a\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pstart\(0px\).smartphone_BdB.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-of-type(7) > td.Ta\(end\).Fw\(600\).Lh\(14px\) > span').text
print([Earnings_Date, price, rate, Yield, Dividend_Date, Volume])
real_time_price()
>> ['May 03, 2021 - May 07, 2021', '73.07', '+0.69 (+0.95%)', '1.34 (1.86%)', 'Feb 12, 2021', '138,368']
© 2024 OneMinuteCode. All rights reserved.